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We shall study in the following the dynamic stability of a thin elastic 
shell filled partly or completely with an ideal incompressible liquid. 
Use will be made of a paper by Moiseev [ 1 1 which deals with free vibra- 
tions of an elastic beem containing a liquid, as well as of [ 2 1 and [ 31, 
devoted to the study of dynamic and static stability of elastic systems 
without a liquid. 

1. The problem indicated reduces to the solution of the variational 
equation 

1 

8 
s 

(T”-A”--U”)dt ~0 (1.1) 
10 

where T”..and U”..are the kinetic and the potential energies, respectively, 
of the perturbed system, so that 

while the quantity A” represents the work of a certain reduced loading, 
arising as a result of perturbations of the system, done in the dis- 
placements of such perturbations. The determination of the reduced load- 
ing is achieved in the same manner as in [ 2 1. In such cases when, in the 
determination of these loadings, the inertial terms can be neglected. or 

when the initial state (the state which is to be investigated for stabil- 

ity) of the shell is approximately a membrane state, they will be 
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F~ = p+ C + W’T2°) - T1° 6 (E, P) + 2 @zpS”) + So & (ezQ) - qP (el + e,,] 

F, = TIM + Taoxz (1.4) 

F, = &[g (~zQTl'1 - T2" -& (8zQ) + G (81Qs") + So-$ (61~) -9, (~1 + es) ] 

and then 

A” = ; [F,u + Fpv + F,w]d6 (1.5) 
c 

Here and in the following we shall denote by: 2 the middle surface of 
the shell: a, /3 the curvilinear orthogonal coordinates in the middle sur- 
face; n a normal to the middle surface; P, Q the coefficients of the 

first quadratic form of the middle surface; II, V, 1 the displacement com- 
ponents of a perturbation of the shell in the directions of a, p, n, re- 

spectively; us, p mass densities of unit surface area of the shell and 

unit volume of the liquid, respectively; c 1, c2, q~,, K~, r relative 
deformations of the shell, expressible In terms of u, (I, v by means of 
well-known formulas of the linear theory of shells; T1, Tx, S, Ml, M2, If 
stress resultants and couples of the shell, expressible in terms of the 
relative deformations by means of Hooke’s law; Tlo, Tzo, 9 stress 
resultants of the non-perturbed shell, which characterize the initial 
membrane state of the shell: pa, q, q, external surface loadings, acting 
on the shell, possibly functions of time; a the acceleration of the 
translational motion of the system; S the free surface of the liquid in 
the state of rest; V the volume occupied by the liquid; 4 velocity 
potential of ,the liquid in that domain; z( ‘) the wetted surface of the 

shell;xl the part of the boundary of V where the derivative dp/ ah is 

known; 8, the part of the boundary of V where the function q% is known; 
G Green’s function of Neumann-Dlrichlet' s problem for Laplace’ 8 equation 
in the domain V. 

The potential 
manner: 

C$ can be expressed in terms of G in the following 

The solution of Equation (1.1) reduces to the solution of the four 
differential equations 

i-9 a%L 
h(u) + &2(v) + .513(4 + - & F,-m,, at2 

I 
=O 
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J&(u) + -522 (V) + I;zs(w) + - 
1 -v”[* l32V 
Bh L p - 'jlo_ 1 = 0 

(1.7) 

b(u) +Ls2(V) +&3(w) + 
azw acp 

mo~-Q~ =o 1 
Acp=O 

with boundary conditions corresponding to fixed edges of the shell, and 
conditions for the velocity potential of the liquid on the boundary of 
the domain V. The edges of the shell can be fixed in various ways, there- 
fore we do not formulate here the boundary conditions corresponding to 
them explicitly. The conditions for $ are 

a-!$=0 on the free surface z = 0 

aq aw on the wetted middle 
--- 
an - at surface of the shell 

(1.8) 

(1.9 

The operators Lll, . . . . LS3 appearing in Equations (1.7) are the left- 
hand members of the equations of the theory of shells [ 4.5 1. 

2. It is not difficult to introduce into the discussion such operators 
L, I, E, N and a vector X(u, v, w, 4). so that Equations (1.7) appear in 
the form 

3x ax 
LX+MX+E,,,+N at=O 

The operators L, M, E, N satisfy the conditions of existence and 
uniqueness of the generalized solution in accordance with Theorem 3 of 

16 I. 

3. As an application of the theory developed above we consider In the 
following the question of dynamic stability of a circular cylindrical 
shell filled with a liquid and with hinged edges. 

Let us introduce a system of cylindrical coordinates r, z, 8 oriented 
In the usual way. Assume the cylinder under consideration of radius R to 
be situated between the planes t = 0 and z = 1. The inner space of the 
cylinder Is partly filled with a liquid of density p up to a level z = Z1. 
We choose the curvilinear coordinates a and @ In such a manner as to have 
B = 8, Q = s/R, where 6 is the angular coordinate of the cylindrical 
system. 

Assume the cylindrical shell considered to be under the action of a 
distributed radial loading q,(a, t). This can be, for example, a hsdro- 
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static loading. The shell is, in addition, acted upon by a longitudinally 
distributed load qa(a, t) and by a longitudinal compressive force F(t). 

For the case under consideration the coefficients of the first 
quadratic form will be P = Q = R, while the curvatures are K, = 0, 

K* = l/R. 

We assume that the shell is initially in a membrane state of stress, 

characterized by the stress resultants TIO, T2”. 

Integrating the equations of the cylindrical shell in the membrane 

state of stress we obtain 

a 

T1° = R s qa (a, t) da - & F (t), T2’ = Ilq,(a, tj (3.1) 

0 

The relative deformations of the cylindrical shell will be 

The components of the reduced loading are determined by Formulas (1.4). 
which lead to 

1 
F, = ~2 (T,” - Tao) 

1 @u 
Fp =p(T2-T1=&q, Pa=-&{T;g + T;(g+ w>} (3.3) 

we now turn to the determination of the velocity potential 4 of the 

motion of the liquid. 

Relaxing the boundary conditions at the section z = 0 and neglecting 
the wave motion on the free surface, we shall assume that at the sections 

z = 0 and z = I, we know the additional pressure p produced by the per- 
turbation of the system under consideration. 

It is obvious that such an assumption is justified in the case of long 
cylinders, because in this case the energy of the wave motion is small 
as campared with the total energy of the system and, besides, long 
cylinders lose stability in a non-axisymmetrical deformation, when 

which means absence of expulsion of fluid. i.e. P = 0. ConsequentlY, the 
function + is known at the sections z = 0 and z = II; we consider these 

sections as the domain I;. Cn the lateral surface we know the derivative 
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a+/& = &/at. therefore we choose the wetted surface of the shell as 

our domain xl. 

In order to determine 4 from Equation (1.6). we write down Green’s 

function for the cylinder 0 < a < ll/R, r < R, with the condition that 
dG/d, = 0 when r = R, and G = 0 when a = 0 or a = Z1/R: 

co 00 

G = + x x’sin &a) sin &u’) g,, (r,r’) cos (p - p’) 4 

p=1 q=o 

(3.4) 

where 

PZR 1, (ppr’/ R) 
Clp’F gp, cry f) = I,’ @,) [Ip’ (~~1 K, (rp +) - 1, (pp +) K,’ hp)] 

A prime at the sign of sum means that half the term of order zero 

should be taken. 

Eliminating 4 from the third equations of the system (1.7), we obtain 

PU I -+ aau 1 + v a+ C9W l-v 

af2apP’ -?--a%@ +v&+ Eh [ 
F,--m& =O 

I 
1 + v aau aav i-va2v aw (3.5) 

--F-SZ@+f+ 
-- 

2 aa2 +,P+ 
i-v i 

Eh LFB-mOg =0 1 

The tangential components n,,d2 u/a t2, r,,d2dd t2 of the inertia forces 

and those of the reduced loading, namely the components Fa and F 
B’ 

are 

usually neglected in th’e theory of shells 12 1 in comparison with the 

normal components r0a2v/d t2 and F,. respectively. 

If use is made of this simplification and if we introduce a new un- 

known function @(a, @, t), connected to the old variables by the 

tions 

a50 \ 630 

J 

as0 - 
-hap4 + 3Z@-v 53 

rela- 

a30 as0 
t’=2G& T7*0-(2+v)- asap +aps+ w = y7Ty0 

then the first two equations will be fulfilled identically, while the 

third equation will serve for determination of @ 

(V +i)~V~v~0-_(1-v)~2(~-~)vm+~ 2 
i - 9 a40 

aa4+ 
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(3.7) 

In order to satisfy the boundary conditions 

PW I 
W.= 0, m = 0, v = 0, T1 = 0 for a=0andu=x (3.8) 

we prescribe for the function @ the boundary conditions 

Satisfying these conditions we try to find the solution of the iutWro- 
differential equation (3.7) by the method of Galerkin in the form of a 

series 

cI, (a, 8, t) = 5 i f,,(t) sin &,a cos 43 
n=o m=o 

(1, = y) 13.10) 

Substitution of (3.10) into Equation (3. ‘7) gives 

00 03 

H,zo{[ (A,” + n2 + 1)s (a,” + ny + (i - v ) a,= (a*2 - n2) (jLgn2 -t- aa) + 

+ yhm2]f mn sin h,u cos n@ + 7 (Am2 + na) j&t sin h,a cos nfi - 

- % ITI”& f Tea (nz- t)] (hma + n”)zfm, sin &,,a cos nf3 -I- 

G (&,,2 + na) f,i sin &a’ cos n@‘da’ 
> 

= 0 
\‘, 

(3.11) 

Let us consider in more detail the last term of this equation. 

x cos g (p - p’) cos np’da’da = 

x fm @ sin pLpa cos nB (3.12) 
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Substituting this expression into Equation (3.11) and equating the 
coefficients of co6 n/3 to zero, we obtain the system of equations 

co 

2 1r (Lx” + na + II2 (a,,’ + n’)’ + (1 - V) Am2 (A,’ - n4) + ‘! am41 f,, sin &a - 
rn=” 

- $ ITI~J.,’ + Tao (n” - I)] (A,’ + n$)* f,, sin ~,,,a + F (A,,% + n2) f,, sin A, o + 

f 5 (-l)P~gp,r(R, R)%‘T:Tp sin~f,~.ginp,u}=O (3.131, 

P=O 

(n = I,;, 3, . Y., 

Multiplying the last equation by sin Xia and integrating between the 
limits 0 and a = 1/R. we obtain for determination of f,,,(t) the following 
infinite coupled system of equations: 

- $ J @!f mm mn = 0 (n, i = 1,2,. . .) (3.14) 
WI=0 m=o 

Here, the notation is introduced 

J.(l) = & rn C 
(h: + 11.~ + 1)2 (AC + n2) + (1 -v) AC (Q - n4) + ‘$ &4] 

l/R 

J (1) _ R 1.z (h,s + .z)a 
mni - D wn s 

TI” (a, t) sin &,a sin @da + 
0 

l/R 

+ $ (II?' - 1) (Am2 + nf) \ Tz” (CL, t) sin h,u sindiuda 

1 

/ mni = i (-I)p+i v gpn (RIR) (a 
p=o m 

JFiT 7’ 21 
P P ia 

) sin m~zl sin F 

The applicability of the method of Galerkin to the solution of the 
problem under consideration proves the convergence of the system of 
equations (3.14). This leads to the conclusion that an approximate solu- 
tion of this infinite system can be obtained by using a truncated finite 
system of equations (3.14) with n, i = 1, . . . , IV. 

As a result we shall obtain a system of Hill’s equations, and an in- 
vestigation of this system will permit us to answer the question con- 
cerning the natural frequencies and critical forces for the system, con- 
sisting of shell and liquid, and to establish the region of dynamic 
stability in the space of the system parameters n/R, 1,/R, 1/R, a,, p for 

various external loadings. 
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4. Let us consider in greater detail the case when the liquid fills 
the entire inner space of the cylindrical shell. This corresponds to the 
case I = I,. In the infinite sum I ani there remains the term p = 1 and, 
further, I . = 0 for all numbers II f i. For II = i we obtain mna 

Iini = Ini = qf gin (R, R) (hi2 + P) (4.1) 

Furthermore. we replace the stress resultants Tlo (a. t) and TzO(a, t) 

by the mean values 

TlO* (t) = : \ Tl” (a, t) da, 

1/n 
R . T,“* = _ 
1 i 

Tzo (a, t) da (4.2) 

Then the coefficient: J!,ii vanish for all numb:rs I f i. while for 
R = i they become 

J,(z) = J,(2) = R 
2n mi 2o1 Ai2 (3,: + n2) Tl”* (t) + & (h2 - 1) (AC + hz) Tao* (t) (4.3) 

By virtue of these simplifications the infinite coupled system (3.14) 

reduces to a system of ordinary Hill equations 

(Zino + Zin) ‘2 + [ J,l$ - J,:) (t)] fi, (t) = 0 (i, II = 1, 2, . . .) (4.4) 

This system is conveniently written in the following form: 

d~++_xp-T~) fin(t)=0 (n, i = 1, 2, . . .) (4.5) 

The quantities 

[(inR/Zja + n2 + 112 D 
O’ ’ = R4 [m. + 4npRg,, (R,R)] + 2rl 

+ 
D (1 -v) (iaxR / I)% [(inR / 1)4 - n4] + (in;R / Z)4 (1 - 9) / la 

R4 [m. -I- 4nRpg,, (R,R)I I(inR IV -I- nala (4.6) 

appearing in (4.5) are of the nature of natural frequencies of the shell; 

the quantity 4npRgin(R, R) represents the added mass due to the presence 
of the liquid in the shell. The quantities 

T1* = 
ain2 Imo -I- 4aRQgin (R, 41 

(inR 1 l)2 
Tat = - %’ [m, + 4fiQRgi,j(R, R)l 

n= - 1 

represent the critical longitudinal and normal loadings; their Physical 
meaning is that if the stress resultants TP* or Tao* exceed those 
values the solution of Equations (4.5) will increase exponentially, which 
corresponds to the loss of stability of the shell. 

The analysis of the dynamic stability of the shell can be carried out 
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with the aid of a diagram of stability of Hill’s equation (4.5). In this 
case it will be possible to indicate for any value of shell parameters 
whether the latter will be stable under the action of given forces. 

It must be stated that the presence of liquid masses causes consider- 
able decrease of the natural frequencies for the first harmonics of the 
bending mode. In some examples the ratio of decrease amounts to several 
hundred. 

It is also essential that the critical values of the stress resultants 
for loss of static stability are not influenced by the presence of a 
liquid. It is, in analogy to the case of vibrations of a beam with a 
liquid [ 1 I , impossible to indicate an equivalent shell, although it is 
possible to indicate the equivalent mass of shell for each bending mode. 

The authors express their gratitude to N.N. Moiseev for the statement 
of the problem and for his frequent valuable advice. 
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